


ABSTRACT 

By a planar tree Is meant a realization of a tree In the plane, 

and by an isomorphism between two planar '-tees is meant a mapping 

which is not only an isomorphism in the usual sense of trees but 

which also preserves  the clockwise cyclic order of edges about each 

node.    Explicit  formulae are given for each of the following:     (1)  the 

nuitber of nonisomorphic unrooted planar trees with    n   edges,   (2)  the 

number of nonisomorphic rooted planar trees with    n   edges, and (3)  the 

number of nonisomorphic rooted planar trees with    n    edges such that 

the root is incident on exactly    k    edges,  of which one is distinguished. 



By a planar tree,  rooted planar tree, etc., will be meant any 

realization of a tree, rooted tree, etc., In the plane.    By an Iso- 

morphism between two planar trees, etc., will be meant any one-to- 

one mapping of the nodes and edges of one onto the other which is an 

Isomorphism in the usual sense for such trees and which in addition 

preserves the clockwise cyclic order of the edges  about each node. 

The results obtained in this note, contained in Theorems 1 through 3 

below, extend results obtained by Harary, Prins,  and Tutte  [1].    In 

the interest of simplifying formulae, all the results given here are 

stated in terms of the number of edges of a tree,  rather than the 

number of nodes as was done in [1]. 

THEOREM 1.    Let    R(n)    denot» the number of nonisomorphic (un- 

directed, unlabeled)  rooted planar trees with    n    edges.    Then for 

n > 1, 

(1) R(n)-^    S>(f)(28
s)        • 

s|n 

where    q)   denotes the Euler furccion. 

THEOREM 2.    Let    F(n)    denote the number of nonisomorphic  (free, 

undirected, unlabeled)  planar trees with    n    edges.    Then for    n >  1, 

^   0(2s)    • s|n 
l<s<n 
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where the second of the four terms on the right In (2) Is to be under- 

stood as zero if n Is even. 

Note that (2) has been written so that it reduces to the first 

line if n is prime. In this form the asymptotic behavior of F(n) 

Is clear. 

THEOREM 3. Let E(n,k) denote the number of nonisomorphic 

rooted planar trees with n edges such that the root is incident on 

exactly k edges, one of v/hlch is distinguished. Then 

/ON r./ i N   k  /2n-k\   /2n-k\  „ /2n-k-l\ (3) E(n,k) > ^ ( n_k) - ( n_k) -2 ( ^.J 

In the terminology of Knuth [2; p. 306, p. 389] E(n,k) is the 

nunber of nonequivalent ordered trees with n edges and k edges at 

the root. 

Proof of Theorem  3. With each tree T from the class enumerated 

by E(n,k) we will associate a string s(T) of left and right pa- 

rentheses. As a first step we convert T into an ordered tree 

[2; p. 306] by redrawing it as in Fig. 1 with the root r(T) upper- 

most and the distinguished edge e(T) to the left of the other edges 

depended from the root. An examination of Fig. 1 together with the 

following remarks should make clear how the string s(T) is derived 

from the ordered tree T. To each of the n-k edges of T not 

incident on the root there corresponds a matched pair of left and 

right parentheses in 8(T). Each node p , l<l<k , adjacent to the 

root determines a subtree T, consisting of p  and all nodes and 
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edges below It In T. To each such subtree there corresponds a 

(possibly empty) group of matched parentheses In s(T), and each 

such group Is set off on the right by an unmatched right parenthesis. 

Thus the last character In the string s(T) Is always an unmatched 

right parenthesis, whereas the first character Is an unmatched right 

parenthesis If and only If the distinguished edge e(T) Is a terminal 

edge. In all there are n-k left parentheses, n-k matched right 

parentheses, and k unmatched right parentheses in s(T), for a total 

of 2n-k characters.  Let S(n,k) denote the set of all  strings of 

length 2n-k consisting of n-k left parentheses and n right pa- 

rentheses, and let S'(n,k) denote the subset consisting of all 

strings s(T)  formed as T ranges over the class enumerated by 

E(n,k). Now observe that each string s In S'^k) determines 

the planar tree from which it is derived to within isomorphisms, and 

hence 

(4) E(n,k) - Is'C^k)! . 

This follows easily from the observation that the matching of parentheses 

in    s    (find hence the ordered tree    T)   can be reconstructed unambiguously 

by first matching the innermost pairs of parentheses in any order and 

working outward,  leaving exactly    k    unmatched right parentheses.    This 

is essentially a standard result concerning the parsing of strings of 

parentheses.     (If desired an extra    k    left parentheses can be Imagined 

to the left of the string   s.)    However with a little extra thought it 

can be seen that the same procedure  (i.e. , working outward from the 

Innermost pairs until exactly   k    unmatched parentheses remain) will 
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also work on any member of   S(n,k)    provided It is first closed up 

into a circular string.    Clearly then each string in    S(n,k)    can be 

cyclically permuted to form a string In    S'dk.k),   specifically by 

placing any unmatched right parenthesis at the end.    More particularly, 

let    s    be any string in    S(n,k)     and let    C   be the equivalence class 

in   S(n,k)    consisting of all strings which are cyclically equivalent 

to    s.    Then     \c\  ■  (2n-k)/q,    where    q i 1    accounts  for the fact that 

s    may be periodic.    It is obvious that    q    must divide both    (2n-k) 

and    k,    and in fact    IcOS'Cn.k)]  - k/q.    Since the relation 

[cnsHnjoJ 
2n-k 

holds for each equivalence class, it must hold also for S(n,k) 

itself, that is. 

The desired result (3) follows immediately from (A). 

T: 

»IT): 

matching'. 

))){){{)()))) 

Fig. 1 
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Proof of Theorem 1. Consider the following five conditions 

which may be Imposed separately or in combinations on a rooted planar 

tree T: 

(i) T has n edges, 

(ii)  There are k edges incident on the root, 

(iii) Exactly one edge of T incident on the root is distinguished, 

(iv) The group of automorphisms of T which fix the root, but 

not necessarily the distinguished edge (if any), is of 

order q. 

(v) The group of automorphisms of T which fix the root, but 

not necessarily the distinguished edge (if any), is of 

order a multiple of q. 

Let R(n,k,q), E(n,k,q), and E*(n,k,q) denote the nunber of aon- 

isomorphic rooted planar trees satisfying the following Indicated 

combinations of the above conditions: 

R(n) . 

R(n>k,q) . 

E(n,k) . 

E(n,k,q) . 

E*(n,k,q) . 

(D 

(i), (ii). (iv) 

(i), (ii), (iii) 

(i), (ii). (iii), (iv) 

(i). (ii). (iii). (v) 

Foi comparison the corresponding combinations of conditions defining 

RUO and E(n.k) have been included.  Note that each of the quantities 

R(n.k,q), E(n,k,q), and E*(n,k,q)  is necessarily zero unless q divides 

both n and k. Thus clearly 
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n/q 

(5) R(n) - y      y   R(n,roq,q)     . 
q|n    mpl 

Also, 

(6) K(n,inq,q)  - - E(n,tnq,q)   , 

since for each tree In the class enumerated by    R(n,inq,q)    there are 

only    m    Isomorphically distinguishable edges at the root.    Next, by 

the definitions of    E*(n,k,q)     and    E(n,k,q),    E*(n,k,q)  - V]     E(n,k,tq), 

but because    E*(n,k,q)    and    E(n,k,q)    are zero unless    q    divides    k. 

E* (n,k,|) -     2,   E(n.k.j)      for    in|k  , 

aim 

By the Moebius inversion formula, 

E(n,k,£)  -  'S   y(£) E*(n,kA,    for    m|k  , m        A—i m 
ÄJm 

or equivalently, 

(7) E(n,inq,q)  «    2,  M(Ä)E*(n,mq>Äq)   . 

i\m 

Finally from tha correspondence illustrated in Fig. 2 It is apparent 

that 

(8) E*(n,l,j) - E(j,y)  provided j|n, j|i . 

Thus combining (5) through (8) we have 

RCn) "ill .(« i EC^.fi . 
q |n m»l Ä.|m 

I— 
'q 

JU* 
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wheie the condition   ^|(n/q)    reflects the proviso In (8).    With a 

change of variables    m ■ ü.t    and    q « n/r    and a rearrangement of the 

summation,  this becomes 

r/fc 

*<*) '111 *W IF E^^ 
r|n    SL\T    t-1 

A further change of variable    r - sJl    and rearrangement yield 

r i ra 

(9) R(n) m    1      1   J w(0      ^    ^ECs.t) 
sin -^n 

's 
J Lt-1 

The first bracketed sum can be simplified using the elementary 

identity 

1 hw -^(w) • 

The second bracketed sum in (9)   can be simplified using (3)   and some 

elementary binomial identities   [2, p.53] as follows: 

2W>- i^r:) 
t-i t-i 

i i ni1) 
t-i 

- i (28;1) 

2s V   s/    . 

The desired result (1) Is now immediate. 
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E*{]2ßt2)  = £(6,4) 

Fig. 2 

Proof of Theorem  2. Let E
k(x) denote the enumerating function 

Ek(x) -  ^ E(n,k) xn . 

n>k. 

from the definition of    E(n,k)    in terms of  trees it follows 

immediately that 

(10) Ej^x)   =   [E^x)]1" . 

From Theorem 3 of  [1] we have 

t(x) - T(x)  - -i»  [P2(x) - P(x2)] 
2x 

where    t(x)/x   is the enumerating function for    F(n), T(x)/x   is the 

enumerating function for    R(n),    and   P(x)/x - E.Cx).     (The common 

factor    1/x   accomplishes  the translation from enumeration by nodes 

to enumeration by edges.)    In view of (10)  then. 
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F(n) - R(n) - j ECn+l.Z) + | E(^,l) , 

where the final term is to be interpreted as zero is n is even. 

Applications of (1), (3), and elementary binomial identities yield 

the desired result (2). 
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